libeblearn
|
#include <ebl_machines.h>
Public Member Functions | |
net_cscc () | |
net_cscc (parameter< T, Tstate > &prm, intg ini, intg inj, intg ki0, intg kj0, idx< intg > &tbl0, intg si0, intg sj0, intg ki1, intg kj1, idx< intg > &tbl1, idx< intg > &tbl2, intg outthick, bool norm=false, bool mirror=false, bool tanh=false, bool shrink=false, bool diag=false) | |
void | init (parameter< T, Tstate > &prm, intg ini, intg inj, intg ki0, intg kj0, idx< intg > &tbl0, intg si0, intg sj0, intg ki1, intg kj1, idx< intg > &tbl1, idx< intg > &tbl2, intg outthick, bool norm=false, bool mirror=false, bool tanh=false, bool shrink=false, bool diag=false) |
Standard LeNet5-type architecture without the final e-dist RBF layer.
ebl::net_cscc< T, Tstate >::net_cscc | ( | ) |
Empty constructor, awaiting for initialization by the user via the init() function.
ebl::net_cscc< T, Tstate >::net_cscc | ( | parameter< T, Tstate > & | prm, |
intg | ini, | ||
intg | inj, | ||
intg | ki0, | ||
intg | kj0, | ||
idx< intg > & | tbl0, | ||
intg | si0, | ||
intg | sj0, | ||
intg | ki1, | ||
intg | kj1, | ||
idx< intg > & | tbl1, | ||
idx< intg > & | tbl2, | ||
intg | outthick, | ||
bool | norm = false , |
||
bool | mirror = false , |
||
bool | tanh = false , |
||
bool | shrink = false , |
||
bool | diag = false |
||
) |
void ebl::net_cscc< T, Tstate >::init | ( | parameter< T, Tstate > & | prm, |
intg | ini, | ||
intg | inj, | ||
intg | ki0, | ||
intg | kj0, | ||
idx< intg > & | tbl0, | ||
intg | si0, | ||
intg | sj0, | ||
intg | ki1, | ||
intg | kj1, | ||
idx< intg > & | tbl1, | ||
idx< intg > & | tbl2, | ||
intg | outthick, | ||
bool | norm = false , |
||
bool | mirror = false , |
||
bool | tanh = false , |
||
bool | shrink = false , |
||
bool | diag = false |
||
) |
The init function creates the machine by stacking the modules in this order (c-s-c-s-c-f): convolution_layer, subsampling_layer, convolution_layer, subsampling_layer, convolution_layer, full_layer. <ini> <inj>: expected max size of input for preallocation of internal states <ki0> <kj0>: kernel size for first convolutional layer <tbl0>: table of connections between input anf feature maps for first layer <si0> <sj0>: subsampling for first layer <ki1> <kj1> <tbl1> <si1> <sj1>: same for next 2 layers <ki2> <kj2> <tbl2>: same for last convolution layer <outthick>: number of outputs. <prm> an idx1-ddparam in which the parameters will be allocated.