libeblearn
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
ebl::abs_module< T, Tstate >
ebl::addc_module< T, Tstate >
ebl::answer_module< T, Tds1, Tds2, Tstate >
ebl::average_pyramid_module< T, Tstate >Creates a pyramid of the input with average subsampling
ebl::back_module< T, Tstate >
ebl::bboxA bounding box class, based on the rect class
ebl::bbox_partsA bounding box that can be composed from multiple bounding boxes
ebl::bboxes
ebl::Bbprop_tester< T >
ebl::bbstate_idx< T >
ebl::bgr_to_yp_module< T, Tstate >
ebl::bgr_to_ypuv_module< T, Tstate >
ebl::binarize_module< T, Tstate >
ebl::Bprop_tester< T >
ebl::bstate_idx< T >
ebl::channels_module< T, Tstate >Abstract class for image channels preprocessing
ebl::channorm_module< T, Tstate >Abstract class for normalization of image channels
ebl::class_answer< T, Tds1, Tds2, Tstate >
ebl::class_datasource< Tnet, Tdata, Tlabel >
ebl::class_node< Tlabel >
ebl::class_state
ebl::classifier_meter
ebl::codec< T >
ebl::codec_lone< T >
ebl::contrast_norm_module< T, Tstate >
ebl::convabsnorm_layer< T, Tstate >
ebl::convolution_layer< T, Tstate >
ebl::convolution_module< T, Tstate >
ebl::copy_module< T, Tstate >
ebl::cost_module< T1, T2, Tstate1, Tstate2 >
ebl::cross_entropy_energy< T, Tstate >
ebl::cutborder_module< T, Tstate >
ebl::datasource< Tnet, Tdata >
ebl::detector< T, Tstate >
ebl::diag_module< T, Tstate >This module applies a gain per unit (like a diagonal linear module)
ebl::diff_module< T, Tstate >
ebl::distance_l2< T >
ebl::divisive_norm_module< T, Tstate >
ebl::ebm_1< T, Tin, Ten >An abstract class for a module with one inputs and one energy output
ebl::ebm_2< Tin1, Tin2, Ten >An abstract class for a module with two inputs and one energy output
ebl::ebm_module_1_1< T, Tin, Tout, Ten >
ebl::euclidean_module< T1, T2, Tstate1, Tstate2 >
ebl::fc_ebm1< T, Tin, Thid, Ten >
ebl::fc_ebm2< T, Tin1, Tin2, Ten >
ebl::flat_merge_module< T, Tstate >
ebl::forget_param
ebl::forget_param_linear
ebl::fovea_module< T, Tstate >
ebl::fstate_idx< T >
ebl::fsum_module< T, Tstate >
ebl::full_layer< T, Tstate >
ebl::gd_param
ebl::hierarchy_datasource< Tnet, Tdata, Tlabel >
ebl::infer_param
ebl::interlace_module< T, Tstate >
ebl::Jacobian_tester< T >
ebl::jitter_module< T, Tstate >This module jitters inputs into outputs
ebl::l1_penalty< T, Tstate >An L1 penalty energy given a single input
ebl::l2_energy< T, Tstate >
ebl::labeled_datasource< Tnet, Tdata, Tlabel >
ebl::labeled_pair_datasource< Tnet, Tdata, Tlabel >
ebl::laplacian_module< T, Tstate >
ebl::laplacian_pyramid_module< T, Tstate >Creates a laplacian pyramid of the input
ebl::layers< T, Tstate >A stack of module_1_1 modules
ebl::layers_2< T, Tin, Thid, Tout >
ebl::lenet< T, Tstate >
ebl::lenet5< T, Tstate >
ebl::lenet7< T, Tstate >
ebl::lenet7_binocular< T, Tstate >
ebl::lenet_cscf< T, Tstate >
ebl::lenet_cscsc< T, Tstate >
ebl::linear_module< T, Tstate >
ebl::linear_shrink_module< T, Tstate >
ebl::logadd_layer< T >
ebl::lppooling_module< T, Tstate >
ebl::lua_module< T, Tstate >An interface to lua modules
ebl::m2s_module< T, Tin, Tout >
ebl::max_classer< T >
ebl::maxss_module< T, Tstate >This module applies max subsampling
ebl::merge_module< T, Tstate >
ebl::mirrorpad_module< T, Tstate >
ebl::mnist_datasource< Tnet, Tdata, Tlabel >
ebl::moduleA module class containing a name
ebl::module_1_1< T, Tin, Tout >An abstract class for a module with one input and one output
ebl::module_1_1_replicable< Tmodule, T, Tstate >
ebl::module_2_1< T, Tin1, Tin2, Tout >An abstract class for a module with two inputs and one output
ebl::module_tester< T >
ebl::ms_module< T, Tstate >
ebl::msc_module< T, Tstate >
ebl::mschan_module< T, Tstate >
ebl::mstate< Tstate >
ebl::mstate_merge_module< T, Tstate >A module that flattens and concatenate multiple states
ebl::mul_module< T, Tstate >
ebl::narrow_module< T, Tstate >
ebl::net_cscc< T, Tstate >
ebl::net_cscf< T, Tstate >
ebl::net_cscsc< T, Tstate >
ebl::net_cscscf< T, Tstate >
ebl::nms
ebl::parameter< T, bbstate_idx< T > >
ebl::parameter< T, bstate_idx< T > >The main class for a trainable bparameter vector
ebl::parameter< T, fstate_idx< T > >
ebl::penalty_l1< T >
ebl::power_module< T, Tstate >
ebl::printer_module< T, Tstate >
ebl::pyramid_module< T, Tstate >Creates a pyramid of the input
ebl::range_lut_module< T, Tstate >
ebl::regression_answer< T, Tds1, Tds2, Tstate >
ebl::resize_module< T, Tstate >
ebl::resizepp_module< T, Tstate >
ebl::rgb_to_hp_module< T, Tstate >
ebl::rgb_to_rgbn_module< T, Tstate >
ebl::rgb_to_y_module< T, Tstate >Convert an RGB input into a Y channel
ebl::rgb_to_yn_module< T, Tstate >
ebl::rgb_to_ynunvn_module< T, Tstate >
ebl::rgb_to_ynuv_module< T, Tstate >
ebl::rgb_to_ynuvn_module< T, Tstate >
ebl::rgb_to_yuv_module< T, Tstate >Convert an RGB input into a YUV output
ebl::rgb_to_yuvn_module< T, Tstate >
ebl::s2m_module< T, Tin, Tout >
ebl::scaler_answer< T, Tds1, Tds2, Tstate >
ebl::scaler_energy< T, Tstate >
ebl::scalerclass_answer< T, Tds1, Tds2, Tstate >
ebl::scalerclass_energy< T, Tstate >
ebl::smooth_shrink_module< T, Tstate >
ebl::softmax< T, Tstate >
ebl::state
ebl::state_idxlooper< bbstate_idx< T > >
ebl::state_idxlooper< bstate_idx< T > >
ebl::state_idxlooper< fstate_idx< T > >Fstate_idx iterator
ebl::stdsigmoid_module< T, Tstate >
ebl::subsampling_layer< T, Tstate >
ebl::subsampling_module< T, Tstate >
ebl::subtractive_norm_module< T, Tstate >
ebl::supervised_euclidean_machine< Tdata, Tlabel, Tstate >
ebl::supervised_trainer< Tnet, Tdata, Tlabel >
svector
ebl::table_module< T, Tstate >This module connects inputs and outputs with a connection table
ebl::tanh_module< T, Tstate >
ebl::tanh_shrink_module< T, Tstate >
ebl::thres_module< T, Tstate >
ebl::trainable_module< T, Tds1, Tds2, Tin1, Tin2, Ten >
ebl::vote_answer< T, Tds1, Tds2, Tstate >
ebl::voting_nmsA type of NMS that accumulates bounding boxes
ebl::wavg_pooling_module< T, Tstate >
ebl::y_to_yp_module< T, Tstate >
ebl::zpad_module< T, Tstate >