|
libeblearn
|
#include <ebl_answer.h>
Public Member Functions | |
| vote_answer (uint nclasses, double target_factor=1.0, bool binary_target=false, t_confidence conf=confidence_max, bool apply_tanh=false, const char *name="vote_answer") | |
| virtual void | fprop (Tstate &in, Tstate &out) |
This module produces answers based on voting of multiple answers. It assumes multiple network outputs have been concatenated in its input.
| ebl::vote_answer< T, Tds1, Tds2, Tstate >::vote_answer | ( | uint | nclasses, |
| double | target_factor = 1.0, |
||
| bool | binary_target = false, |
||
| t_confidence | conf = confidence_max, |
||
| bool | apply_tanh = false, |
||
| const char * | name = "vote_answer< T, Tds1, Tds2, Tstate >" |
||
| ) |
Initialize target vectors given the number of classes.
| nclasses | The number of classes for classification. |
| target_factor | A factor applied to targets. |
| binary_target | If true, target is a scalar with -1 or 1. |
| conf | The type of confidence. |
| apply_tanh | If true, a tanh is applied to inputs. |
| void ebl::vote_answer< T, Tds1, Tds2, Tstate >::fprop | ( | Tstate & | in, |
| Tstate & | out | ||
| ) | [virtual] |
Produce a vector of answers given input 'in'. 'out' contains answers in this order: class id and confidence.
Reimplemented from ebl::class_answer< T, Tds1, Tds2, Tstate >.