|
libeblearn
|
#include <ebl_normalization.h>
Public Member Functions | |
| contrast_norm_module (idxdim &kerdim, int nf, bool mirror=false, bool threshold=true, bool global_norm=false, parameter< T, Tstate > *p=NULL, const char *name="contrast_norm", bool across_features=true, bool learn_mean=false, double cnorm=2.0, bool fsum_div=false, float fsum_split=1.0, double epsilon=1e-6) | |
| virtual | ~contrast_norm_module () |
| destructor | |
| virtual void | fprop (Tstate &in, Tstate &out) |
| forward propagation from in to out | |
| virtual void | bprop (Tstate &in, Tstate &out) |
| backward propagation from out to in | |
| virtual void | bbprop (Tstate &in, Tstate &out) |
| second-derivative backward propagation from out to in | |
| virtual void | dump_fprop (Tstate &in, Tstate &out) |
| virtual contrast_norm_module < T, Tstate > * | copy (parameter< T, Tstate > *p=NULL) |
| virtual bool | optimize_fprop (Tstate &in, Tstate &out) |
| virtual std::string | describe () |
| Returns a string describing this module and its parameters. | |
Protected Attributes | |
|
subtractive_norm_module< T, Tstate > | subnorm |
| divisive_norm_module< T, Tstate > | divnorm |
| Tstate | tmp |
| bool | global_norm |
| global norm first | |
| bool | learn_mean |
| Learn mean weighting. | |
Friends | |
| class | contrast_norm_module_gui |
Local contrast normalization operation using a weighted expectation over a local neighborhood. An input set of feature maps is locally normalized to be zero mean and unit standard deviation.
| ebl::contrast_norm_module< T, Tstate >::contrast_norm_module | ( | idxdim & | kerdim, |
| int | nf, | ||
| bool | mirror = false, |
||
| bool | threshold = true, |
||
| bool | global_norm = false, |
||
| parameter< T, Tstate > * | p = NULL, |
||
| const char * | name = "contrast_norm", |
||
| bool | across_features = true, |
||
| bool | learn_mean = false, |
||
| double | cnorm = 2.0, |
||
| bool | fsum_div = false, |
||
| float | fsum_split = 1.0, |
||
| double | epsilon = 1e-6 |
||
| ) |
| kerdim | The kernel dimensions. |
| nf | The number of feature maps input to this module. |
| mirror | Use mirroring of the input to pad border if true, or use zero-padding otherwise (default). |
| global_norm | If true, apply global normalization first. |
| p | If specified, parameter p holds learned weights. |
| across_features | If true, normalize across feature dimensions in addition to spatial dimensions. |
| learn_mean | If true, learn mean weighting. |
| cgauss | Gaussian kernel coefficient. |
| contrast_norm_module< T, Tstate > * ebl::contrast_norm_module< T, Tstate >::copy | ( | parameter< T, Tstate > * | p = NULL | ) | [virtual] |
Returns a deep copy of this module.
| p | If NULL, reuse current parameter space, otherwise allocate new weights on parameter 'p'. |
Reimplemented from ebl::module_1_1< T, Tstate >.
| void ebl::contrast_norm_module< T, Tstate >::dump_fprop | ( | Tstate & | in, |
| Tstate & | out | ||
| ) | [virtual] |
Calls fprop and then dumps internal buffers, inputs and outputs into files. This can be useful for debugging.
Reimplemented from ebl::module_1_1< T, Tstate >.
| bool ebl::contrast_norm_module< T, Tstate >::optimize_fprop | ( | Tstate & | in, |
| Tstate & | out | ||
| ) | [virtual] |
Pre-determine the order of hidden buffers to use only 2 buffers in order to reduce memory footprint. This returns true if outputs is actually put in out, false if it's in in.
Reimplemented from ebl::module_1_1< T, Tstate >.